
www.manaraa.com

XML and Relational Database Management Systems:
Inside Microsoft® SQL Server™ 2005

 Michael Rys
Microsoft

mrys@microsoft.com

ABSTRACT
Microsoft® SQL Server™ has a long history of XML support
dating back to 1999. While first concentrating on enabling the
transport of relational data via XML with the SQL Server 2000
release, SQL Server 2005 now additionally provides native XML
storage and query support. This part of the tutorial will provide an
insight into how SQL Server 2005 fits XML functionality into its
core relational database management framework.

1. INTRODUCTION
Soon after the XML recommendation was finalized, XML was
most commonly used as the common transport syntax for data
exchange. Since large amounts of the interesting data that needed
to be exchanged are stored inside relational database systems, it
quickly became important to provide mechanisms to facilitate this
exchange by generating and consuming XML in the context of
relational database management systems. The most important
aspect of this first generation XML support is the ability to pub-
lish existing relational data in XML form (XML Publishing) and
then to decompose such published data back into the existing
relational structures (Shredding).

Microsoft SQL Server was the leader in this technology. Early
solutions focused on mid-tier approaches, where relational data is
converted into XML outside the database engine. One example is
the ADO recordset XML format. Starting with SQL Server 2000,
SQL Server offers both a mid-tier and server-side approach for
publishing and shredding XML [30].

The mid-tier approach provides a bi-directional XML view that
is defined by mapping an XML Schema to the relational schema.
The view then can be used to query the data using an XPath sub-
set that is translated internally into SQL queries (so-called FOR
XML EXPLICIT queries). The XML view is also used to shred
XML data into relational form using a schema-driven approach
with XML bulkload, and to support data modification using up-
dategrams [31].

The server-side functionality provides a rowset-to-XML aggre-
gator, called FOR XML which provides different modes for XML
Publishing. The complementary functionality of generating a
rowset from XML is called OpenXML that provides a query
driven shredding mechanism. [30] gives an overview on these
approaches and we will look more closely at FOR XML in the
context of SQL Server 2005’s XML Publishing functions.

While the publishing and shredding requirement is still one of
the most important use cases for integrating XML and relational
database systems, it is not the only one. With the advent of XML
object serializations and the increased use of XML for represent-
ing documents and forms, an increasing number of customers
want to store their XML documents inside a database manage-

ment system without having to “shred” them into a relational
structure or lose the ability to query into the structure of the
XML.

To address this need, SQL Server 2005 adds native XML man-
agement capabilities along the functionality outlined in the intro-
duction of this tutorial. While some of the functionality – such as
the XML data type – follows the SQL-2003 standard, others –
such as the publishing functionality – do not, since they were
designed before the standardization effort and provide easier-to-
use approaches. Instead of building a new XML-only database
system, SQL Server 2005 deeply integrates the XML capabilities
into the existing database management framework that provides
general services such as backup, restore, replication, concurrency
control etc., while both extending and leveraging the relational
storage and query infrastructure.

Figure 1: SQL Server 2005 XML Architecture overview
Figure 1 provides a high-level architectural diagram of the native
XML support in SQL Server 2005 which will be used as the basis
for this tutorial. The remainder of the SQL Server part of the tuto-
rial will present both an overview of the functional extensions as
well as lower-level insights into how they integrate into the exist-
ing relational framework. First, it will cover the logical and physi-
cal organization and storage of native XML data and how data is
typed and validated using collections of XML Schemas. Then, the
tutorial will look at how the data is queried and updated using
XQuery and update extensions and how such expressions are
mapped into internal operator trees. The tutorial will discuss the
XML indexing framework to provide efficient query execution
and will conclude with some examples on the extended XML
Publishing functionality.

The tutorial will not cover the mid-tier XML support such as the
SQLXML component [31] or go into details of how to use the
XML functionality of the .Net Framework in the context of an in-
process CLR user-defined function or the full-text search capa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2005, June 14–16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00

958

www.manaraa.com

bilities. For this and more detailed aspects, we would like to refer
to the collection of whitepapers at [32].

2. STORING XML IN SQL Server 2005
SQL Server, like any other relational database system, allows the
user to store markup data in a CLOB or BLOB type (called nvar-
char(max) and varbinary(max), respectively) to preserve textual
fidelity. However, these types provide no semantic guarantee
about the XML well-formedness or provide any direct queryabil-
ity. Basically, the XML data either needs to be processed on the
mid-tier or via a CLR user-defined function, which necessitates
parsing and main-memory processing outside of the query proces-
sor and thus the optimizer, or a runtime conversion to the built-in
XML data type. Full-text search can be applied using the general
full-text search capabilities, assuming an XML aware full-text
filter (called IFilter) is available for building the full-text index.

2.1 Logical Model of the XML data type
In order to provide structurally-aware storage of arbitrary XML
documents, SQL Server 2005 adds native XML support based on
the XML data type provided by the ISO/ANSI SQL-2003 stan-
dard [13]. As in the standard, the XML data type can consist not
only of well-formed XML documents but also allows XML frag-
ments that can have an arbitrary number of top-level elements or
text nodes underneath the document node. As explained in the
tutorial introduction, the data type provides XML fidelity.

However, since SQL Server 2005 provides XQuery support and
allows the use of XML Schemas to not only validate but also type
the data (see section 3), the actual logical model of the XML data
type is not based on the XML Information Set [14] but on the
XQuery 1.0 Data Model [15] (thus anticipating the new version of
the SQL standard). The XML data type can be used anywhere
SQL scalar types can be used, including columns, variables and
parameters. For example, the following statement defines a col-
umn doc of type XML in table XDoc:
create table XDoc (doc XML)

SQL Server 2005 provides parsing from a SQL string type (taking
both the codepage and the XML encoding into account) or a SQL
binary type (only looking at the XML encoding and treating the
XML text as a byte sequence) to the XML type as part of the
common implicit and explicit CAST/CONVERT semantics. Dif-
ferent conversion options are available to influence whitespace
preservation and limited DTD processing. For example, the fol-
lowing insert statement converts the string constant in UTF-16
encoding into XML while inserting the value into the table XDoc:
insert into XDoc Values (N'<document/>')

2.2 Physical Model of the XML data type
Parsing the XML not only checks for the extended well-formed-
ness constraint, but also generates an internal representation of the
XML at the physical level. Similar to how relational databases
map the logical concepts of rows and columns to a byte-layout on
disk, the XML data type’s physical model is a byte level repre-
sentation of the logical concepts such as element and attribute
nodes This internal format can be considered a binary encoding
of the XML that provides a closer representation of the XQuery
data model, which is easier to process in our infrastructure (such
as defining indices or performing partial updates). It also provides
an average size reduction of 20% to 30% over the fully expanded
XML in UTF-16 encoding. The binary XML representation is

faster to parse than its textual counterpart, especially when its
content is typed. The binary XML can also be shipped directly to
database clients such as ADO.Net if they indicate that they under-
stand the binary XML format, thus avoiding the serialization of
the XML into a textual representation at the server and the costlier
text parsing on the client. If the API provides an XML-specific
API such as SAX, DOM or XmlReader, then the client compo-
nent can operate directly on the binary representation and achieve
better performance.

SQL Server 2005 uses the existing BLOB infrastructure of the
storage engine to persist the binary XML data. This means, for
example, that a single XML instance can be up to 2GBytes in its
binary encoding and benefits from the existing storage optimi-
zations such as when the value is stored in-row and when out-of-
row. In order to support XQuery expressions on the XML, SQL
Server provides additional access paths to the data (see section 4).

3. XML TYPING AND VALIDATION
The basic, unadorned XML data type contains unvalidated XML
data that only needs to satisfy the well-formedness constraints
imposed by the type itself. In some scenarios, additional con-
straints on the XML structure and markup content need to be
enforced when storing the XML data. For example, a purchase
order contract column should only contain XML documents that
satisfy the content model of purchase order contracts. Therefore,
SQL Server provides a new metadata object called an XML
Schema collection as a way to store W3C XML Schemas [7].

3.1 XML Schema Collections
An XML Schema collection is a collection of multiple XML
Schema components (e.g., an element or type declaration) from
potentially many different XML Schemas of different target
namespaces, and can be used to constrain, validate and type XML
data type instances. It is identified by a SQL identifier and its
information is fully accessible through relational catalog tables.
For example, the expression
create xml schema collection S1 as @s

creates an XML Schema collection with name S1 that consists of
the XML Schemas contained in the SQL variable @s. The query
select C.name as SchemaColl, N.name as NSUri
from sys.xml_schema_collections C
left outer join sys.xml_schema_namespaces N
on C.xml_collection_id = N.xml_collection_id

for example returns a list of all XML Schema collections together
with their contained namespaces.

Since the XML Schemas are stored as meta-data, the original
XML form is not preserved and non-validation relevant informa-
tion such as comments is lost. If preserving such information is
important, the schemas can additionally be stored in an XML data
type column. If a schema should be returned in XML form, a sys-
tem built-in function provides the reconstructed schema.

Using a schema collection has two advantages over just relying
on a single namespace URI: A database schema can contain dif-
ferent versions of the same URI in different schema collections
(for example the different XHTML schemas) and each collection
yields a closed, consistent type world for open content sections
that helps in statically typing XQuery expressions.

3.2 Typing and Validating XML Data
SQL Server 2005 allows you to associate an XML Schema
collection with an XML data type and to differentiate between an

959

www.manaraa.com

XML type that has to contain a well-formed document or may
contain content fragments. The additional schema constraints
guarantee that any XML instance inserted into the column will be
valid according to the schemas and the instance will be typed
accordingly. For example, a price element inside the XML will
be of type xs:decimal as described by the associated schema
component instead of being untyped. The following example
shows a table definition that constrains the instances in the
POContract XML column to a well-formed document (i.e., it
can only have a single top-level element) that is valid according
to a ContractSchema schema collection in the same database:
create table Orders(

id int, oderdate datetime,
POContract XML(document ContractSchema))

Such schema collections can also be used to validate previously
untyped XML data during execution such as in
select CAST(@x as XML(S1))

where the CAST will fail if the document is not valid according to
the schemas in S1.

In addition, SQL Server 2005 supports XML Schema evolution
as long as it does not require revalidation of existing data, e.g.,
adding new top-level schema components. Scenarios where
revalidation is required are supported by creating new schema
collections and explicitly reassigning and revalidating the data.

Associating XML Schema collections also provide information
that can be used to optimize the physical design of the stored
XML data both in its binary format and when an index is created.
For example, simple typed element content will not be
represented as a text node anymore, but as the typed value of the
element, thus making the storage more compact and access of the
typed value more efficient. Furthermore, the type information can
be used to statically type and optimize XQuery expressions (see
section 4).

4. QUERYING AND MANIPULATING XML
SQL Server 2005 provides the following XQuery-based
capabilities on the XML data type: query transformation, atomic
value extraction, existence check, node-to-row mapping
capabilities, and some node-level update functionality using a
data modification language that is based on XQuery (XML-
DML).

4.1 Calling XQuery and XML-DML
SQL Server 2005 provides the query and modification capabilities
using the method invocation syntax used also for the newly added
CLR user-defined types instead of a keyword-based syntax. Each
method takes a string literal as the query or update expression and
potentially other arguments. The XML data type instance, on
which the method is applied provides the context item for the path
expressions. The in-scope schema definition context of the query
will be populated with the necessary type information provided
by the XML Schema collection associated with that type, or if no
collection is provided, will assume that the XML is untyped. This
means that you do not have to use an explicit call to a document
function or variable to bind to the XML to be queried and all
schema information is implicitly provided, thus removing the
need for explicit schema import.

Furthermore, the SQL Server 2005 XQuery implementation is
statically typed, which will provide you with early detection of
errors in path expressions, type and cardinality mismatch errors,

and additional optimizations. The following gives an overview of
the available methods for querying XML data.

The query method takes an XQuery expression and returns an
always untyped XML data type instance that then can be cast to a
target schema collection if the data needs to be retyped. In
XQuery specification-speak, the construction mode is set to strip.
The following example shows a simple XQuery expression that
transforms a complex Customer element into a summary
showing the name and sales leads for Customer elements that
have sales leads (ignoring the remainder of the Customer
content):
select doc.query('
 for $c in /doc/customer
 where $c//saleslead
 return
 <customer id="{$c/@id}">{
 $c/name, $c//saleslead
 }</customer>')
from TripReports

The query will be executed for each row in the table TripRe-
ports and be applied to every doc XML data type instance.

The value method takes an XQuery expression and a SQL type
name, extracts a single atomic value from the result of the
XQuery expression, and casts it into the specified SQL type. If
the XQuery expression results in a node, the typed value of the
node will implicitly be extracted. Note that the value method
performs a static type check that at most one value is returned.
Since the static type of a path expression often may infer a wider
static type, even though the dynamic semantics will only return a
single value, we recommend using the positional predicate to
retrieve at most one value. The following example shows a simple
XQuery expression that counts the order elements in each XML
data type instance and returns it as a SQL integer value:
select doc.value('
 count(/doc/customer/order)', 'int')
from TripReports

The exist method takes an XQuery and returns 1 if the expression
results in a non-empty sequence and 0 otherwise. The following
expression retrieves every row of the TripReports table where
the document contains at least one customer with a sales lead:
select doc
from TripReports
where 1 =
 doc.exist('/doc/customer//saleslead')

So far, the expressions always map from one XML data type in-
stance to one result value per relational row. Sometimes however,
you want to split one XML instance into multiple subtrees where
each subtree is in a row of its own for further relational and
XQuery processing. This functionality is provided by the nodes
method which takes an XQuery expression and generates a single-
column row per node that the expression returns. Each value in
the row contains an internal reference to a different node. Since
the resulting type is a reference type that does not exists in SQL
Server outside the context of a single query, the query methods
have to be applied for dereferencing and materializing the result.
These methods will be applied like on any other XML data type
with the difference that the context item for the path expressions
is not the document root of the XML but at the referenced node.
The following example will extract a row that contains the XML
representation of its customer, the name of the customer, and the
order id for every customer order in the XML column:

960

www.manaraa.com

select N.o.query('..') as Customer,
 N.o.value('../name[1]',
 'nvarchar(20)') as CustomerName,
 N.o.value('@id', 'int') as OrderID
from TripReports cross apply
TripReports.doc.nodes('/doc/customer/order')
as N(o)

Note that the nodes method is similar to the OpenXML
functionality in that it can be used to shred XML into relational
form, but its expression is integrated into XQuery processing.

The value method above provides a way to promote an XML
value into the SQL value space. Sometimes, one wants to access
relational data in the context of XQuery instead. For that case,
SQL Server 2005 has added two special XQuery functions called
sql:variable() and sql:column() that take constant
string literals to refer to a SQL variable or a correlated column.

Finally, the modify method provides a mechanism to change an
XML value at the subtree level. SQL Server 2005 provides for
inserting new subtrees at specific locations inside a tree, changing
the value of an element or an attribute, and deleting subtrees. The
following example deletes all customer saleslead elements of
years previous to the year given by a SQL variable or parameter
with the name @yr:
update TripReports
set doc.modify('delete /doc/customer
 //saleslead[@year< sql:variable("@yr")]')

4.2 Execution of XQuery Expressions
How does the database system execute these XQuery
expressions? As mentioned earlier, the XML data is stored in an
internal binary representation. However, in order to execute the
XQuery expressions, the XML data type will internally be
transformed into a so-called node table format. The internal node
table basically uses a row to represent a node. Each node receives
an OrdPath as its node id, enough key information to point back
to the original row in the base table, information about the node
name and its type (in a tokenized form), node value, an inverted
path (the Path_ID) from a node to the document root, and more.
Figures 2 and 3 show an example of how to number an XML
document using an OrdPath (based on [33]):
 <BOOK ISBN=”1-55860-438-3”>

 <SECTION>
 <TITLE>Bad Bugs</TITLE>
 Nobody loves bad bugs.
 </SECTION>
 <SECTION>
 <TITLE> Tree Frogs </TITLE>
 All right-thinking people
 <BOLD>love</BOLD> tree frogs.
 </SECTION>
</BOOK>

Figure 2: Sample XML data
The OrdPath encodes both the document order and the hierarchy
information. By using an intermediate careting number between
the siblings, insertions can occur without affecting the neighbor
numbering. For example, inserting a new element before the
SECTION element will create a new node with the OrdPath 1.2.1.
Retrieval of a subtree or a parent node can easily be achieved by a
single range scan using the OrdPath prefix on the node table, thus
avoiding the self-joins normally associated with subtree retrieval.
For more information about the numbering scheme see [33].

ORDPATH TAG NODE TYPE VALUE
1. 1 (BOOK) 1 (Element) null

1.1 2 (ISBN) 2 (Attribute) '1-55860-438-3'
1.3 3 (SECTION) 1 (Element) null
1.3.1 4 (TITLE) 1 (Element) 'Bad Bugs'
1.3.3 -- 4 (Text) 'Nobody loves bad bugs.'
1.5 3 (SECTION) 1 (Element) null
1.5.1 4 (TITLE) 1 (Element) 'Tree frogs'
1.5.3 -- 4 (Text) 'All right-thinking people'
1.5.5 7 (BOLD) 1 (Element) 'love'
1.5.7 -- 4 (Text) 'tree frogs'

Figure 3: XML data of Figure 2 in simplified node table
All XQuery and update expressions are then translated into an
XML algebra tree which in turn is then translated into an
extended relational operator tree against this internal node table
that uses the common relational operators and some operators
specifically designed for XQuery (see Figure 4). The resulting
tree is then grafted into the operator tree of the relational
expression so that in the end, the query execution engine will
receive a single operator tree that it will optimize and execute (see

[34]).

XQuery expression

XQuery Compiler

XML algebra tree (XmlOp operators)

XML Operator Mapper

Relational Operator Tree
(relational+ operators)

 Relational Query Processor

Figure 4: Architecture for XQuery compilation.
For example, the XQuery algebra provides an XmlOp_Path
operator that provides the algebra operation for path expressions.
Depending on the path expressions and the presence or absence of
indices (see section 4.3) it is mapped to different operator trees.
Figure 5 shows a relational operator tree for the expression
doc.query('/BOOK/SECTION'). Assuming that we have an
exact path expression (no wildcards) and a primary XML index
(see section 4.3) is present, then XmlOp_Path is mapped to a
relational SELECT operator that filters primary XML index rows
(GET(PXI)) by matching the supplied path /BOOK/SECTION
with the value in the Path_ID column. The Path_ID column stores
the reversed path in an encoded form. The XML Operator Mapper
applies a Path_ID generation function over the path to generate
the search value for the Path_ID column (depicted as
#SECTION#BOOK). Since the result is returned as an XML data
type instance, the XML_Serialize operator receives rows
corresponding to the subtree of each SECTION and produces the
XML result. The APPLY operator in the relational operator tree is
a correlated join between the SECTION rows and the right child
of the APPLY operator.

The retrieval of each of the SECTION subtrees (right-side
SELECT) selects the nodes belonging to the subtree having the
OrdPath value in between those of the SECTION node and its

961

www.manaraa.com

descendant limit (DL). This is executed efficiently using a range

scan over the primary XML index.

 where Customers.CustomerID = Orders.CustomerID
 for xml path('Employee'), type) as Employees

XML_Serialize

Apply

Select ($b)

$b.OrdPath ≤
OrdPath < DL($b)

GET(PXI)

Select

GET(PXI)

Path_ID=#SECTION#BOOK

from Customers
for xml path('Customer'), root('Doc')

Namespaces can be associated using the SQL-2003 standard
WITH XMLNAMESPACES clause.

6. Conclusion and Outlook
This part of the tutorial has shown how SQL Server 2005 extends
its relational database engine to support XML and XQuery in a
seamlessly integrated way. First customer deployments and
performance and scalability investigations show that the chosen
functionality and architectures provide lots of benefits over
manual shredding and main-memory programming approaches.

Figure 5: Relational operator tree XML Indices
4.3 XML Indices While the current implementation only supports a subset of

XQuery (mainly due to the fact that the standard will be finalized
after SQL Server 2005 releases) and only operates on a single
XML data type instance per query, the presented architecture will
have no problem supporting the full language over a set of XML
documents or a variety of input documents. Future releases will
extend the presented support based on customer feedback and by
taking the next versions of the SQL/XML standard into account
depending on customer benefits. Some interesting areas are node-
level concurrency control [38], additional indexing options and
top-level XQuery [37].

In order to avoid costly runtime transformations from the binary
XML into the node table, a user can prematerialize the node table
using the primary XML index:
create primary xml index xIdx on XDoc(doc)

Additionally, SQL Server 2005 provides three secondary XML
indices of which the query execution can take further advantage.
The PATH index supports simple types of path expressions (it
indexes the Path_ID column), the PROPERTY index provides
support for the common scenario of property-value comparisons
and the VALUE index helps if the query uses wild-cards in com-
parisons. For more information about the XML Indices see [35]. 7. ACKNOWLEDGMENTS
4.4 Optimizations The author would like to thank all his colleagues at Microsoft for

their contributions to the XML support in SQL Server 2000, 2005
and beyond. Special thanks to Shankar Pal who took the time to
review the presented material.

The operator tree will be optimized using the general database
optimizer that will make cost based decisions on how to execute
the operator tree and how to best utilize the available indices.
Additional optimizations can already be done when generating the
XML algebra tree and when mapping the XML operators. For
example, the static typing rules can be applied to avoid runtime
type checks and type inferences can avoid runtime type casts.
When multiple path expressions are being used, the mapping of
the XmlOp_Path operators can collapse paths that are close for
more efficient path retrievals. [34] provides more information
about the query compilation and optimization.

8. REFERENCES
References below [30] refer to references in the tutorial introduc-
tion.
[30] M. Rys: Bringing the Internet to Your Database: Using SQL

Server 2000 and XML to Build Loosely-Coupled Systems in
7th ICDE, pages 465-472, Heidelberg 2001.

[31] http://msdn.microsoft.com/sqlxml
[32] http://msdn.microsoft.com/XML/BuildingXML/XMLandDat5. XML Publishing abase/default.aspx

SQL Server 2000 introduced the FOR XML clause for transform-
ing relational rowsets into a variety of XML shapes. SQL Server
2005 extends this functionality by taking advantage of the XML
data type and provides efficient, simple and intuitive mechanisms
to generate XML results [36]. The following query shows the new
FOR XML PATH mode producing a Doc element that contains
customers with their contact information and their orders and
employees working on their orders (based on the Northwind ex-
ample database):

[33] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, N. West-

bury. ORDPATHs: Insert-Friendly XML Node Labels.
SIGMOD 2004.

[34] S. Pal, I. Cseri, O. Seeliger, M. Rys et al.: XQuery Implemen-
tation in a Relational Database System. Submitted for publi-
cation.

[35] S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis, V.
Zolotov. Indexing XML Data Stored in a Relational Data-
base. In Proceedings of VLDB Conference, Toronto, 2004.

select CustomerID as "@CustomerID",
[36] M. Rys. What's New in FOR XML in Microsoft SQL Server

2005 at
 CompanyName,

http://msdn.microsoft.com/library/en- City as "address/city",
 PostalCode as "address/zip", us/dnsql90/html/forxml2k5.asp ContactName as "contact/name",

[37] M. Rys. XQuery and Relational Database Systems. In
XQuery from the Experts, Howard Katz (ed.), Addison-
Wesley, 2003.

 Phone as "contact/phone",
 (select OrderID as "@OrderID"
 from Orders
 where Orders.CustomerID = Customers.CustomerID
 for xml path('Order'), type), [38] M. Haustein and T. Haerder. Adjustable Transaction

Isolation in XML Database Management Systems. In XSym
2004, Springer LNCS 3186, 2004.

 (select distinct LastName as "@LastName"
 from Employees join Orders
 on Orders.EmployeeID = Employees.EmployeeID

962

http://msdn.microsoft.com/sqlxml
http://msdn.microsoft.com/XML/BuildingXML/XMLandDatabase/default.aspx
http://msdn.microsoft.com/XML/BuildingXML/XMLandDatabase/default.aspx
http://msdn.microsoft.com/library/en-us/dnsql90/html/forxml2k5.asp
http://msdn.microsoft.com/library/en-us/dnsql90/html/forxml2k5.asp

	1. INTRODUCTION
	2. STORING XML IN SQL Server 2005
	2.1 Logical Model of the XML data type
	2.2 Physical Model of the XML data type
	3. XML TYPING AND VALIDATION
	3.1 XML Schema Collections
	3.2 Typing and Validating XML Data

	4. QUERYING AND MANIPULATING XML
	4.1 Calling XQuery and XML-DML
	4.2 Execution of XQuery Expressions
	'All right-thinking people'

	4.3 XML Indices
	4.4 Optimizations

	5. XML Publishing
	6. Conclusion and Outlook
	7. ACKNOWLEDGMENTS
	8. REFERENCES

